Бактериология, 2025, том 10, №3, с. 71–76 Bacteriology, 2025, volume 10, No 3, p. 71–76

Внутривидовая вариабельность вирулентных свойств *Burkholderia thailandensis*

А.Ю.Замарина, М.В.Бартенева, И.А.Хабарова, С.И.Жукова, Н.Г.Плеханова, А.Д.Викторов, И.Б.Захарова

ФКУЗ «Волгоградский научно-исследовательский противочумный институт» Роспотребнадзора, Волгоград. Российская Федерация

Burkholderia thailandensis – сапрофитическая бактерия, филогенетически близкая Burkholderia pseudomallei, до недавнего времени считавшаяся непатогенной. Описанные случаи инфекции, вызванные *B. thailandensis*, в т.ч. системные с летальным исходом, редки и все первоначально были диагностированы как мелиоидоз. Однако вопрос о вирулентных свойствах *B. thailandensis* до сих пор остается неясным.

Цель. Оценить вирулентность разных штаммов *B. thailandensis*, диссеминацию по органам и тканям в процессе инфекции и динамику изменения вирулентности при пассировании *in vivo*.

Материалы и методы. Инфекцию моделировали на белых мышах (беспородных линии Balb/c) и золотистых хомячках. Животных заражали внутрибрюшинно в дозах 10⁴, 10⁶, 10⁸ м.к. по 10 особей на дозу заражения. Значения LD₅ рассчитывали для 30-дневного периода. Исследовано 15 штаммов *B. thailandensis*. Наличие возбудителя оценивали бактериологически и методом полимеразной цепной реакции.

Результаты. Показано наличие внутривидовой вариабельности вирулентных свойств *B. thailandensis* – 28,6% исследованных штаммов проявляли вирулентность для золотистых хомячков. Обнаружено, что после пассирования *in vivo* вирулентность *B. thailandensis* повышается – LD_∞ статистически достоверно снижалась на 1–3 порядка (*p* < 0,05). После долгосрочного хранения в искусственных условиях вирулентность снижается. Наименьшую способность к диссеминации показал штамм E264, тогда как штаммы VS22501 и VS22512 обнаруживались во всех исследованных органах к 25-м суткам, бактериального клиренса не наблюдали ни в одном случае.

Заключение. По способности к диссеминации по различным органам в процессе инфекции без выраженного тканевого тропизма, повышению вирулентности после пассирования *in vivo* и ее снижению после долгосрочного хранения в искусственных условиях *B. thailandensis* сходна с возбудителем мелиоидоза. В отличие от *B. pseudomallei*, штаммы *B. thailandensis* дикого типа вызывают не острую, а хроническую форму инфекции при сходной патоморфологической картине.

Ключевые слова: Burkholderia thailandensis, вирулентность, Burkholderia pseudomallei, диссеминация

Для цитирования: Замарина А.Ю., Бартенева М.В., Хабарова И.А., Жукова С.И., Плеханова Н.Г., Викторов А.Д., Захарова И.Б. Внутривидовая вариабельность вирулентных свойств *Burkholderia thailandensis*. Бактериология: 2025; 10(3): 71–76. DOI: 10.20953/2500-1027-2025-3-71-76

Intraspecific variability of virulence properties Burkholderia thailandensis

A.Yu.Zamarina, M.V.Barteneva, I.A.Khabarova, S.I.Zhukova, N.G.Plekhanova, A.D.Victorov, I.B.Zakharova

Volgograd Research Institute for Plague Control of Rospotrebnadzor, Volgograd, Russian Federation

Burkholderia thailandensis is a saprophytic bacterium philogenically close to Burkholderia pseudomalle, which was recently considered nonpathogenic. The described cases of infection caused by B. thailandensis, including systemic, are rare and all were initially diagnosed as melioids. However, the question of the virulent properties of B. thailandensis remains unclear.

The goal. To evaluate the virulence of different *B. thailandensis* strains, dissemination through organs and tissues during infection, and the dynamics of virulence changes during *in vivo* passaging.

Materials and methods. The infection was modeled on white mice (outbred and Balb/c line) and golden hamsters. Animals were infected intraperitoneally in doses of 10^4 , 10^6 , 10^8 m.c., 10 animals per each dose of infection. LD₅₀ values were calculated for a 30-day period. Fifteen strains of *B. thailandensis* were studied. The presence of the pathogen was assessed bacteriologically and by the method PCR.

Results. The presence of intraspecific variability of virulence properties was shown -28.6% of the studied strains exhibited virulence for golden hamsters. It was found that virulence of *B. thailandensis* increased after *in vivo* passing -LD50 statistically reliably decreased by 1–3 order (p < 0.05). After long-term storage, the virulence decreases. Strain E264 showed the lowest ability to disseminate, while VS22501 and VS22512 were found in all the studied organs, by the 25^{th} day bacterial clearance was not observed in any case.

Для корреспонденции:

Замарина Анастасия Юрьевна, научный сотрудник лаборатории патогенных буркхольдерий ФКУЗ «Волгоградский научно-исследовательский противочумный институт» Роспотребнадзора

Адрес: 400066, Волгоград, ул. Голубинская, 7

Телефон: (8442) 37-37-74

Статья поступила 24.03.2025, принята к печати 30.09.2025

For correspondence:

Anastasia Yu. Zamarina, Researcher at the Laboratory of Pathogenic Burkholderia, Volgograd Research Institute for Plague Control of Rospotrebnadzor

Address: 7 Golubinskaya str., Volgograd, 400066, Russian Federation Phone: (8442) 37-37-74

The article was received 24.03.2025, accepted for publication 30.09.2025

A.Yu.Zamarina et al. / Bacteriology, 2025, volume 10, No 3, p. 71-76

Conclusion. B. thailandensis is similar to B. pseudomallei on its ability to disseminate to various organs during infection without pronounced tissue tropism, increase in virulence after *in vivo* passaging, and its decrease after long-term storage in artificial conditions. Unlike *B. pseudomallei*, wild-type *B. thailandensis* strains cause not an acute but a chronic form of infection with a pathomorphological similar to melioidosis.

Key words: Burkholderia thailandensis, virulence, Burkholderia pseudomallei, dissemination

For citation: Zamarina A.Yu., Barteneva M.V., Khabarova I.A., Zhukova S.I., Plekhanova N.G., Victorov A.D., Zakharova I.B. Intraspecific variability of virulence properties *Burkholderia thailandensis*. Bacteriology. 2025; 10(3): 71–76. (In Russian). DOI: 10.20953/2500-1027-2025-3-71-76

омплекс Burkholderia pseudomallei (BPC) в настоящее время содержит 8 видов: B. pseudomallei, B. mallei, B. thailandensis, B. humptydooensis, B. oklahomensis, B. singularis, В. mayonis и В. savannae [1]. Среди представителей ВРС два высокопатогенных вида - B. pseudomallei и В. mallei – занимают особое положение, являясь возбудителями особо опасных инфекций мелиоидоза и сапа соответственно. Все виды ВРС, за исключением возбудителя сапа, являются сапрофитами. Наиболее филогенетически близким видом для возбудителей мелиоидоза и сапа является B. thailandensis, имеющая высокое генетическое сходство с B. pseudomallei и занимающая с ней одинаковые экологические ниши [2]. B. thailandensis впервые была выделена из почвы на северо-востоке Таиланда и до получения в 1998 г. видового статуса считалась слабовирулентным биотипом B. pseudomallei. Сравнительный анализ кодирующих последовательностей основного генома видов B. pseudomallei и B. thailandensis показал, что из 4447 кодирующих последовательностей (CDS), входящих в схему типирования, 4266 являются общими для этих видов и только 181 CDS уникальна для B. thailandensis [2]. Морфология колоний B. thailandensis на твердых питательных средах, особенно на агаре Эшдауна, практически не отличима от колоний В. pseudomallei. Биохимически В. thailandensis отличается от B. pseudomallei только способностью утилизировать apaбинозу, и автоматизированные биохимические анализаторы в большинстве случаев идентифицируют B. thailandensis как B. pseudomallei, а доступные коммерческие системы MALDI-TOF MS (Bruker Microflex Biotyper и bioMérieux Vitek MS) часто определяют B. pseudomallei как B. thailandensis [3]. Сравнительный анализ профилей липополисахарида, являющегося одним из основных иммуногенов, показал их полную идентичность у B. pseudomallei и B. thailandensis [4]. У вариантных по структуре капсулы штаммов B. thailandensis, обозначенных BTCV (B. thailandensis capsular variant), оперон, кодирующий биосинтез капсульного полисахарида, который также относится к основным иммуногенным антигенам, на 95% гомологичен с кластером генов СРЅ В. pseudomallei [5]. BTCV-штаммы перекрестно реагируют с моноклональными антителами на эпитопы капсульного полисахарида B. pseudomallei, что приводит к ошибкам в идентификации возбудителя. В связи с этим видовая идентификация В. thailandensis и ее дифференциация с B. pseudomallei представляет определенную проблему.

Так же как и возбудитель мелиоидоза, *B. thailandensis* является факультативным внутриклеточным патогеном, который обладает сходным с *B. pseudomallei* набором факторов вирулентности [6]. В организме теплокровных хозяев *B. thailandensis* демонстрирует ряд свойств, характерных для возбудителя мелиоидоза: устойчивость к фиксации компле-

мента, выживаемость в макрофагах и толерантность к активным формам кислорода. Оба вида используют сходные молекулярные механизмы для выживания в фагоцитирующих клетках хозяина и используют общую стратегию межклеточного распространения, индуцируя образование многоядерных гигантских клеток [7]. В связи с этим В. thailandensis активно используется в качестве модели для изучения механизмов вирулентности В. pseudomallei.

В течение довольно длительного времени *B. thailandensis* не считалась патогенной для человека. Поскольку в научной литературе описаны случаи инфекции различной степени тяжести, в т.ч. системные с летальным исходом (сепсис, поражение центральной нервной системы), этот тезис в настоящее время подвергается обоснованному сомнению [3, 8–10]. Необходимо отметить, что описанные в литературе случаи первоначально были диагностированы как мелиоидоз. Этиологический агент *B. thailandensis* установлен только после верификации в крупных исследовательских центрах, с использованием в т.ч. полногеномного секвенирования, и весьма вероятно, что большинство случаев инфицирования *В. thailandensis* остаются недиагностированными или проходят под диагнозом мелиоидоза.

До сих пор остается неясным вопрос о длительности персистенции *B. thailandensis* в организме теплокровных, а также о динамике изменения патогенных свойств в процессе инфекции. Известно, что у возбудителя мелиоидоза при пассировании через организм восприимчивых животных вирулентность возрастает, тогда как подобные данные относительно *B. thailandensis* в доступной литературе не обнаружены, и прояснение вопроса о динамике вирулентности штаммов *B. thailandensis* при пассировании *in vivo* и определение оптимального уровня биологической безопасности при работе с данным микроорганизмом является важной задачей Референс-центра по мониторингу за возбудителями мелиоидоза и сапа. В этой связи исследования, направленные на установление патогенного потенциала *B. thailandensis*, представляют определенный практический интерес.

Цель исследования: оценить вирулентность разных штаммов *B. thailandensis*, диссеминацию по органам и тканям в процессе инфекции и динамику изменения вирулентности при пассировании *in vivo*.

Материалы и методы

Инфекцию моделировали на лабораторных животных – относительно устойчивых беспородных и линии Balb/с белых мышах (в возрасте 6–8 нед., массой 18–22 г) и высокочувствительных к мелиоидозу золотистых хомячках (в возрасте 8–10 нед., массой 80–100 г). Животных заражали внутрибрюшинно в дозах 104, 106, 108 м.к., по 10 особей на дозу

заражения. Значения LD50 рассчитывали для 30-дневного периода по И.П.Ашмарину [11].

Исследовано 15 штаммов *B. thailandensis*, в т.ч. 1 штамм BTCV 2.1 из коллекции ФКУЗ «Волгоградский научно-исследовательский противочумный институт» Роспотребнадзора и референтный штамм вида *B. thailandensis* E264 (любезно предоставлен в коллекцию института профессором D.E.Woods (University of Calgary) в 1998 г.).

Наличие возбудителя оценивали бактериологически и методом полимеразной цепной реакции (ПЦР) с использованием набора реагентов для выявления и дифференциации В. mallei, В. pseudomallei и В. thailandensis «Амплиген-Буркхольдерии группы pseudomallei» βLB/D-Eph (РУ РЗН 2018/7785) [12]. ДНК выделяли с помощью набора для выделения геномной ДНК из клеток, тканей и крови (ООО «Биолабмикс», Россия) в соответствии с инструкциями производителя. Продукты ПЦР анализировали в 1,5%-м агарозном геле и визуализировали с помощью окрашивания бромидом этидия.

Все исследования проводились в соответствии с СанПиН 3.3686-21 «Санитарно-эпидемиологические требования по профилактике инфекционных болезней». Все манипуляции с животными проводили в соответствие с законодательством России и международными этическими нормами. Протокол исследования согласован с комиссией по биоэтике ФКУЗ ВНИПЧИ (протокол №4 от 10.10.2023).

Результаты исследования и их обсуждение

Вирулентность штаммов оценивали по LD_∞ для золотистых хомячков, нелинейных белых мышей и мышей линии BALB/c.

При экспериментальной инфекции золотистых хомячков диапазон уровня вирулентности протестированных изолятов находился между LD₅ 104 м.к. и >108 м.к. Штаммы B. thailandensis сиквенс-типа ST80 (E264, VS22510, VS22514 и VS22515; ST345 VS22401 и VS22402; ST76 VS22407, VS22508 и VS22509; ST77 VS22513, а также BTCV 2.1 (ST696)) гибели хомячков при всех дозах заражения не вызывали, что позволяет отнести их к авирулентным. Для штаммов VS22406 (ST76), VS22501 и VS22511 (ST80), VS22512 (ST77) LD₅₀ варьировала от 10⁴ до 10⁶ м.к. (рис. 1), что сопоставимо с таковой для мышей BALB/с отдельных клинических штаммов B. pseudomallei с относительно низким уровнем вирулентности (LD₅₀ 5.10^4 – 10^6 м.к.) [13]. Полученные данные показали, что у В. thailandensis так же, как и у B. pseudomallei, корреляция между сиквенс-типом и уровнем вирулентности не прослеживается. Отсутствие гибели животных при экспериментальной инфекции, обусловленной BTCV 2.1, показало, что наличие у штамма B. thailandensis B. pseudomallei-подобной капсулы не является решающим фактором вирулентности. В пользу данного вывода также свидетельствуют описание двух случаев летальной инфекции в Китае и местной инфекции в Лаосе. Этиологическим агентом системных инфекций были штаммы B. thailandensis 2022DZh и B. thailandensis BPM, относящиеся к основной филогенетической кладе. Оба штамма принадлежат к ST76, выделены с интервалом ~10 лет и географически разделены расстоянием ~200 км [8, 9]. В случае

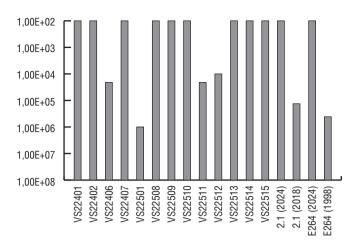


Рис. 1. Вирулентность штаммов *B. thailandensis* для золотистых хомячков.

Fig. 1. Virulence of B. thailandensis strains in golden hamsters.

успешно вылеченного пациента из Лаоса причиной инфекции был штамм BTCV LPD1900722 (ST696) [10].

У павших от инфекции *B. thailandensis* хомячков обнаружены проявления, сходные с подострым мелиоидозом: множественные абсцессы печени, легких, и селезенки. В некоторых случаях за несколько дней до гибели у животных наблюдали парезы задних лап и неконтролируемую дрожь—симптомы, характерные для мелиоидоза.

Все исследованные штаммы B. thailandensis не вызывали гибели нелинейных белых мышей после введения максимальной дозы — 10^8 м.к. Для мышей линии BALB/с LD₅₀ определяли с использованием 4 отличающихся по вирулентности для золотистых хомячков штаммов B. thailandensis. Моделирование инфекции B. thailandensis на мышах линии BALB/с показало межштаммовые отличия вирулентности для этой биомодели. При заражении штаммами B. thailandensis VS22512 и VS22501 LD₅₀ варьировала от 10^5 до 10^8 м.к. Штаммы B. thailandensis E264 и 2.1, у которых ранее LD₅₀ для золотистых хомячков составляла $2,6\cdot10^4$ м.к. (1998 г.) и $7,3\cdot10^4$ м.к. (2018 г.), после длительного хранения гибели линейных мышей, как и золотистых хомячков, не вызывали (рис. 1, табл. 1).

Необходимо отметить, что белые мыши разных линий значительно отличаются по восприимчивости к *B. pseudo-mallei*. Так, по данным J.M.Warawa, между линиями BALB/с и C57BL/6 существует более чем 200-кратная разница по восприимчивости к мелиоидозу, причем линия C57BL/6 и нелинейные мыши имеют одинаковый уровень восприимчивости

Таблица 1. Вирулентность штаммов B. thailandensis для белых мышей Table 1. Virulence of B. thailandensis strains for white mice								
Штамм /	ST	LD ₅₀ (м.к.) /	LD ₅₀ (м.к.) / (m.с.)					
Strain		Нелинейные мыши / Outbred mice	BALB/c					
B. thailandensis E264	ST80	>108	>108					
B. thailandensis 2.1	ST696	>108	>108					
B. thailandensis VS22501	ST80	>108	2,1.108					
B. thailandensis VS22512	ST77	>108	2,1.105					

Таблица 2. Динамика вирулентности <i>B. thailandensis</i> для золотистых хомячков при пассаже <i>in vivo Table 2. Dynamics of B. thailandensis virulence in golden hamsters during in vivo passage</i>								
Штамм / Strain B. thailandensis	L	D ₅₀ (M.K.) / (<i>m.c.</i>)	Средняя продолжительность жизни (суток)* / Average lifetime (days)*					
	Исходные / Original	Пассированные / After the passages	Исходные / Original	Пассированные / After the passages				
VS22406	4,6·10 ⁴	4,6·10³	16	7,6				
VS22501	104	2,1·10³	14	5,8				
VS22511	4,6·10 ⁴	4,6·10³	23	10,4				
VS22512	10 ⁶	2,1·10³	16	7,2				
*Внутрибрюшинное заражение в дозе 10 ⁶ м.к. / Intraperitoneal infection at a dose of 10 ⁶ m.c.								

[14]. Полученные нами данные позволяют сделать аналогичное заключение о восприимчивости нелинейных мышей и линии BALB/c к *B. thailandensis*.

Таким образом, показано, что около трети исследованных штаммов (28,6%) проявляли вирулентность для золотистых хомячков и среди штаммов *B. thailandensis* имеется внутривидовая вариабельность вирулентных свойств.

Для исследования потенциала повышения уровня вирулентности *B. thailandensis* во время инфекции был проведен 2-кратный пассаж *in vivo* с использованием золотистых хомячков. По этическим причинам для пассирования выбрано только 4 вирулентных штамма. Полученные данные по анализу стабильности вирулентности *B. thailandensis* приведены в табл. 2.

У всех исследованных штаммов после пассажей наблюдали повышение уровня вирулентности – LD_{so} статистически достоверно снижалась (p < 0.05) на 1–3 порядка, при сниже-

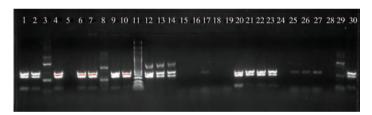


Рис. 2. Исследование секционного материала от животных на наличие ДНК *B. thailandensis* методом ПЦР. Проба (штамм): 1 – л.у.п. (VS 22512), 2 – л.у.б. (264), 3 – печень (VS 22512), 4 – л.у.п. (VS 22512), 5 – головной мозг (VS 22512), 6 – л.у.б. (VS 22512), 7 – селезенка (VS 22512), 8 – л.у.п. (264), 9 – селезенка (264), 10 – л.у.п. (VS 22501), 11 – маркер, 12–14 – К+, 15 – К-, 16 – тимус (VS 22501), 17 – головной мозг (VS 22501), 18 – матка (VS 22501), 19 – печень (264), 20 – селезенка (VS 22501), 21 – печень (VS 22501), 22 – легкое (VS 22501), 23 – тимус (VS 22501), 24 – печень (VS 22501), 25 – семенник (VS 22501), 26 – л.у.б. (VS 22501), 27 – тимус (VS 22501), 28 – семенник (VS 264), 29 – головной мозг (VS 2.1), 30 – селезенка (2.1). Сокращения: л.у.п. – лимфатический узел аховый, л.у.б. – лимфатический узел брыжеечный, К- – отрицательный контроль, К+ – положительный контроль (ДНК *B. pseudomallei*).

Fig. 2. Study of autopsy material from animals for the presence of B. thailandensis DNA by the PCR method. Sample (strain): 1-i.l.n. (VS 22512), 2-m.l.n. (264), 3-liver (VS 22512), 4-i.l.n. (VS 22512), 5-liver (VS 22512), 6-liver (VS 22512), 7-liver (VS 22512), 8-liver (VS 22512), 9-liver (264), 10-liver (VS 22501), 11-liver (VS 22501), 11-l

нии средней продолжительности жизни биомоделей более чем в 2 раза.

Необходимо отметить, что у двух длительно хранившихся штаммов B. thailandensis E264 и 2.1 LD $_{\rm so}$ повысилась с изначальных 2,6·10 $^{\rm 4}$ м.к. (1998 г.) и 7,3·10 $^{\rm 4}$ м.к. (2018 г.) до >10 $^{\rm 8}$ м.к. (2024 г.), т.е. при длительном хранении в искусственных условиях наблюдается снижение вирулентных свойств (рис. 1). Полученные данные свидетельствуют, что B. thailandensis так же, как и возбудитель мелиоидоза, обладает свойством повышения вирулентности после пассирования $in\ vivo$ и ее снижения после долгосрочного хранения в искусственных условиях.

Для изучения диссеминации исходных штаммов по органам и тканям исследовали секционный материал от павших и подвергнутых эвтаназии золотистых хомячков на 7, 16 и 25-е сутки после заражения. Ни один из исследованных штаммов не вызывал острой инфекции, период гибели животных пришелся на 8–16-е сутки. Исследование секционного материала павших и подвергнутых эвтаназии животных на наличие ДНК *B. thailandensis* методом ПЦР показало положительные результаты для всех биопроб, причем ДНК возбудителя обнаружена в трех и более внутренних органах с дальнейшим подтверждением бактериологическим методом (рис. 2, табл. 3).

По способности к диссеминации *B. thailandensis* по внутренним органам выявлены межштаммовые отличия, как и по срокам распространения инфекции. К концу первой недели наблюдения все исследованные штаммы обнаружены в селезенке, печени и легких, за исключением референтного штамма *B. thailandensis* E264, который выявлен только в брыжеечном лимфатическом узле. Пик диссеминации для всех штаммов пришелся на 8–16-е сутки, причем все штаммы, за исключением E264, к этому времени колонизировали и внутренние репродуктивные органы. У выживших к 25-м суткам животных бактериального клиренса не наблюдали ни в одном случае. Более того, штаммы VS22501 и VS22512 обнаружены и в головном мозге.

Заключение

Таким образом, по способности к диссеминации по различным органам в процессе инфекции без выраженного тканевого тропизма, повышению вирулентности после пассирования *in vivo* и ее снижению после долгосрочного хранения в искусственных условиях *B. thailandensis* сходна с возбудителем мелиоидоза. В отличии от *B. pseudomallei*, штаммы *B. thailandensis* дикого типа вызывают не острую, а хро-

Intraspecific variability of virulence properties Burkholderia thailandensis

Таблица 3. Диссеминация исходных штаммов B. thailandensis у золотистых хомячков Table 3. Dissemination of B. thailandensis parent strains in golden hamsters								
Штамм / Strain	Легкие / Lungs	Печень / Liver	Селезенка / Spleen	Тимус / Thymus	Лимфоузел брыжжеечный / Mesenteric lymph node	Головной мозг / <i>Brain</i>	Лимфоузел паховый / Inguinal lymph node	Половые органы (матка/семенники) / Genitals (uterus/testes)
7-е сутки								
B.thailandensis 2.1	+	+	+	+				
B.thailandensis E264					+			
B.thailandensis VS22501	+	+	+		+			
B.thailandensis VS22512	+	+	+	+	+		+	+
8–16-е сутки								
B.thailandensis 2.1			+		+		+	+
B.thailandensis E264		+	+		+			
B.thailandensis VS22501	+	+	+		+	+	+	+
B.thailandensis VS22512	+	+	+	+	+		+	+
17–25-е сутки								
B.thailandensis 2.1			+	+	+			+
B.thailandensis E264					+			+
B.thailandensis VS22501	+	+	+	+	+	+	+	+
B.thailandensis VS22512	+	+	+	+		+	+	
Серым выделены результат	Серым выделены результаты исследования павших животных. / Results of the study of dead animals are highlighted in grey.							

ническую форму инфекции при сходной патоморфологической картине. Полученные данные свидетельствуют о наличии у В. thailandensis внутривидовой вариабельности вирулентных свойств, не коррелирующих с принадлежностью штаммов к определенному сиквенс-типу. Также показано, что наличие в геноме Вр-like CPS кластера генов биосинтеза капсульного полисахарида для штаммов В. thailandensis не является решающим фактором вирулентности и для выявления факторов, определяющих межштаммовые отличия в уровне вирулентности, необходимы исследования на молекулярно-генетическом уровне, что является предметом наших дальнейших исследований.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов. Conflict of interests

The authors declare that there is no conflict of interest.

Информация о финансировании

Авторы заявляют об отсутствии дополнительной финансовой поддержки для данного исследования.

Financial support

The authors declare no additional financial support for this study.

Литература / References

- Hall CM, Baker AL, Sahl JW, Mayo M, Scholz HC, Kaestli M, et al. Expanding the Burkholderia pseudomallei Complex with the Addition of Two Novel Species: Burkholderia mayonis sp. nov. and Burkholderia savannae sp. nov. Appl Environ Microbiol. 2022 Jan 11;88(1):e0158321. DOI: 10.1128/AEM.01583-21
- 2. Meumann EM, Limmathurotsakul D, Dunachie SJ, Wiersinga WJ, Currie BJ.

- Burkholderia pseudomallei and melioidosis. Nat Rev Microbiol. 2024 Mar;22(3):155-169. DOI: 10.1038/s41579-023-00972-5
- Gee JE, Elrod MG, Gulvik CA, Haselow DT, Waters C, Liu L, et al. *Burkholderia thailandensis* isolated from infected wound, Arkansas, USA. Emerging Infectious Diseases, 2018;24(11):2091. DOI: 10.3201/eid2411.180821
- Hsueh PT, Liu CL, Wang HH, Ni WF, Chen YL, Liu JK. A comparison of the immunological potency of *Burkholderia* lipopolysaccharides in endotoxemic BALB/c mice. Microbiol Immunol. 2016 Nov;60(11):725-739. DOI: 10.1111/1348-0421.12450
- Sim BMQ, Chantratita N, Ooi WF, Nandi T, Tewhey R, Wuthiekanun V, et al. Genomic acquisition of a capsular polysaccharide virulence cluster by non-pathogenic Burkholderia isolates. Genome biology. 2010;11:1-17. DOI: 10.1186/gb-2010-11-8-r89
- 6. Kovacs-Simon A, Hemsley CM, Scott AE, Prior JL, Titball RW. Burkholderia thailandensis strain E555 is a surrogate for the investigation of Burkholderia pseudomallei replication and survival in macrophages. BMC microbiology. 2019;19:1-16. DOI: 10.1186/s12866-019-1469-8.
- 7. Place DE, Briard B, Samir P, Karki R, Bhattacharya A, Guy CS, et al. Interferon inducible GBPs restrict *Burkholderia thailandensis* motility induced cell-cell fusion. PLoS pathogens, 2020;16(3):e1008364. DOI: 10.1371/journal.ppat.1008364.
- 8. Chang K, Luo J, Xu H, Li M, Zhang F, Li J, et al. Human Infection with *Burkholderia thailandensis*, China, 2013. Emerg Infect Dis. 2017 Aug;23(8):1416-1418. DOI: 10.3201/eid2308.170048
- 9. Li J, Tan J, Xiong X, Zhong Q, Lu W. *Burkholderia thailandensis* Isolated from Infected Wound, Southwest China, 2022. Emerg Infect Dis. 2024 May;30(5):1055-1057. DOI: 10.3201/eid3005.230743
- Vannachone S, Luangraj M, Dance D, Chantratita N, Saiprom N, Seng R, et al. Case Report: Soft tissue infection with *Burkholderia thailandensis* capsular variant: case report from the Lao PDR. Wellcome Open Res. 2024 Nov 28;9:421. DOI: 10.12688/wellcomeopenres.22706.1
- 11. Ашмарин ИП, Воробьев АА. Статистические методы в микробиологических исследованиях. Медицинская литература, 1962. / Ashmarin IP, Vorob'ev AA. Statisticheskie metody v mikrobiologicheskikh issledovaniyakh. Meditsinskaya literatura, 1962. (In Russian).
- 12. Zakharova I, Teteryatnikova N, Toporkov A, Viktorov D. Development of a multiplex

A.Yu.Zamarina et al. / Bacteriology, 2025, volume 10, No 3, p. 71-76

- PCR assay for the detection and differentiation of *Burkholderia pseudomallei*, *Burkholderia mallei*, *Burkholderia thailandensis*, and *Burkholderia cepacia* complex. Acta Trop. 2017 Oct;174:1-8. DOI: 10.1016/j.actatropica.2017.06.016
- Ulett GC, Currie BJ, Clair TW, Mayo M, Ketheesan N, Labrooy J, et al. Burkholderia pseudomallei virulence: definition, stability and association with clonality. Microbes Infect. 2001 Jul;3(8):621-31. DOI: 10.1016/s1286-4579(01)01417-4
- Warawa JM. Evaluation of surrogate animal models of melioidosis. Front Microbiol. 2010 Dec 29:1:141. DOI: 10.3389/fmicb.201.00141

Информация о соавторах:

Бартенева Мария Васильевна, научный сотрудник лаборатории патогенных буркхольдерий ФКУЗ «Волгоградский научно-исследовательский противочумный институт» Роспотребнадзора

Хабарова Ирина Андреевна, научный сотрудник лаборатории экспериментальных биомоделей ФКУЗ «Волгоградский научно-исследовательский противочумный институт» Роспотребнадзора

Жукова Светлана Ивановна, кандидат медицинских наук, старший научный сотрудник, старший научный сотрудник лаборатории экспериментальных биомоделей ФКУЗ «Волгоградский научно-исследовательский противочумный институт» Роспотребнадзора

Плеханова Наталья Геннадьевна, кандидат биологических наук, доцент, старший научный сотрудник лаборатории экспериментальных биомоделей ФКУЗ «Волгоградский научно-исследовательский противочумный институт» Роспотребнадзора

Викторов Андрей Дмитриевич, младший научный сотрудник лаборатории экспериментальных биомоделей ФКУЗ «Волгоградский научноисследовательский противочумный институт» Роспотребнадзора

Захарова Ирина Борисовна, доктор биологических наук, доцент, ведущий научный сотрудник лаборатории патогенных буркхольдерий ФКУЗ «Волгоградский научно-исследовательский противочумный институт» Роспотовбналзора

Information about co-authors:

Maria V. Barteneva, Researcher at the Laboratory of Pathogenic Burkholderia, Volgograd Research Institute for Plague Control of Rospotrebnadzor

Irina A. Khabarova, Researcher at the Laboratory of Experimental Biomodels, Volgograd Research Institute for Plague Control of Rospotrebnadzor

Svetlana I. Zhukova, PhD, MD, Associate Professor, Senior Researcher at the Laboratory of Experimental Biomodels, Volgograd Research Institute for Plaque Control of Rospotrebnadzor

Natalia G. Plekhanova, PhD in Biological Sciences, Associate Professor, Senior Researcher at the Laboratory of Experimental Biomodels, Volgograd Research Institute for Plague Control of Rospotrebnadzor

Andrey D. Victorov, Junior Researcher at the Laboratory of Experimental Biomodels, Volgograd Research Institute for Plague Control of Rospotrebnadzor

Irina B. Zakharova, PhD, DSc (Biological Sciences), Associate Professor, Leading Researcher at the Laboratory of Pathogenic Burkholderia, Volgograd Research Institute for Plague Control of Rospotrebnadzor

НОВОСТИ НАУКИ

Ученые Йельского университета зафиксировали болезнь легионеров «на месте преступления»

Legionella pneumophila использует систему секреции Dot/Icm IV типа для транслокации эффекторных белков через бактериальную оболочку в клетки-хозяева, что в конечном итоге приводит к тяжелой болезни легионеров. В данной работе опредены in situ почти атомную структуру системы Dot/Icm в интактных бактериях. Идентифицированы два важных, но ранее загадочных белка, DotA и IcmX, которые образуют центральный протоканал внутри системы Dot/Icm в неактивном состоянии, предотвращая преждевременную секрецию эффекторов до установления тесного контакта с клеткой-хозяином. После активации система Dot/Icm претерпевает радикальную конформационную перестройку, формируя протяженный открытый трансоболочечный канал, способный осуществлять прямую транслокацию эффекторных белков из бактериальной цитоплазмы в клетки-хозяева.

Система секреции Dot/Icm Legionella pneumophila относится к

числу наиболее универсальных систем секреции IV типа (T4SS), способных транслоцировать более 330 различных эффекторных белков через бактериальную оболочку в клетки-хозяева. Для сборки и функционирования этой системы требуется не менее 27 белков Dot и Icm, однако ее архитектура и механизм активации остаются недостаточно изученными на молекулярном уровне. В данной работе использовали *in situ* одночастичную криоэлектронную микроскопию для определения околоатомных структур системы Dot/Icm и ее тесной связи с тремя различными поринами наружной мембраны интактных бактерий. Примечательно, что два важных, но загадочных компонента, DotA и IcmX, образуют пентамерный протоканал в неактивном состоянии на центральной оси системы Dot/Icm. При активации Dot/Icm лизатом хозяина этот протоканал претерпевает обширные перестройки, формируя протяженный транскондуит, что визуализируется с помощью криоэлектронной томографии (крио-ЭТ) и усреднения субтомограмм. Более того, сочетание крио-ЭТ и крио-ФИБ измельчения макрофагов, инфицированных *L. pneumophila*, выявляет прикрепление Dot/Icm-машины к мембране хозяина, что предполагает прямую транслокацию эффекторных белков из бактериальной цитоплазмы в хозяина. В совокупности эти исследования идентифицируют комплекс DotA—IcmX как посредника для транслокации эффектора и предоставляют молекулярную основу для понимания сборки и активации сложного Dot/Icm T4SS.

Yue J, Heydari S, Park D, Chetrit D, Tachiyama S, Guo W, et al. In situ structures of the Legionella Dot/Icm T4SS identify the DotA-IcmX complex as the gatekeeper for effector translocation.

Proc Natl Acad Sci U S A. 2025 Sep 30;122(39):e2516300122. DOI: 10.1073/pnas.2516300122